Peter Theunissen, PhD; Beltox/ETS 2024 09 February 2024, Antwerp

MEDICINES EVALUATION BOARD

Qualification of NAMs approaches for detecting MEFL, under ICH S5(R3)

Learnings from the ICH experience

GOOD MEDICINES USED BETTER

The views expressed in this presentation are my own and not

necessarily those of the Medicines Evaluation Board (MEB), nor of

the European Medicines Agency (EMA) or any of its working parties.

Current global DART guidance for Pharmaceuticals: ICH S5(R3)

Globally Harmonize Test Guidelines

- Quality
- Efficacy
- Safety
- Multidisciplinary

Final version Adopted on 18 February 2020

INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE

C B G M E B

ICH HARMONISED GUIDELINE

DETECTION OF REPRODUCTIVE AND DEVELOPMENTAL TOXICITY FOR HUMAN PHARMACEUTICALS

S5(R3)

Δ

Effects of pharmaceuticals on reproductive cycle

Embryo-fetal Developmental (EFD) Toxicity study

 \rightarrow Implantation – closure of hard palate

c B

Gamete

production

Sexual

Maturation

Growth and

development

E

5

New Approach Methods (NAMs) for EFD toxicity testing (history)

Classic models

Whole Embryo Culture (WEC) (1970s) Embryonic Stem Cell Test (EST) (1990s) Zebrafish Embryo Toxicity Test (ZET) (2000s)

Verhoef, RIVM

Van Dartel, RIVM

Hermsen, RIVM

- Investigate effects on development during window of implantation closure hard palate (\rightarrow EFD window)
- Original endpoints based on morphology
- Validation effort by ECVAM WEC/cardiac EST (2004-2009)

NAMs and innovation; Fast moving field!

c B G M E B

Imaging

De Leeuw, 2020

Robotics

PCR / OMICS

Adverse Outcome Pathways (AOPs)

IV. mTEST (-) WEC (-)

4000

400 1000

0.0004

0.0001

0.00004

III. mTEST (+) WEC (-)

0.004 0.01

0.04 0.1

0.4 1

ImTESTI (uM)

Green, 2018

4 10

40 100

Organ-on-Chip \rightarrow embryo on chip???

Machine Learning / Artificial Intelligence

NAMs under ICHS5(R3) (2020-present) Updating regulation takes some time... ...

$\begin{array}{c} c & B & G \\ \hline M & E^{-B} \end{array}$

2010 Start of preparatory process at ICH level

- 2015 Official start of Revision procedure
- 2019 Step 4 approval by ICH
- 2020 Step 5 regional implementation

First ICH guidance to include information on use and qualification of NAMs as alternative for EFD testing

As science innovates <u>quickly</u>, and changing regulation takes <u>time</u> \rightarrow

All information on NAMs and qualification in ANNEX 2: ICHS5(R4) **maintenance procedure** → Possibility for bi-annual changes to Annex

ANNEX 2	ALTERNATIVE ASSAYS
1.1	QUALIFICATION OF ALTERNATIVE ASSAYS FOR PREDICTION OF MEFL
1.2	EXAMPLES OF EFD TESTING STRATEGIES UTILIZING
	ALTERNATIVE ASSAYS 40
1.2	.1 POTENTIAL APPROACH TO DEFER IN VIVO TESTING AS PART OF AN INTEGRATED TESTING STRATEGY
1.2	.2 PHARMACEUTICALS EXPECTED TO BE EMBRYO-FETAL
	TOXICANTS40
1.2	.3 PHARMACEUTICALS INTENDED TO TREAT SEVERELY
	DEBILITATING OR LIFE-THREATENING DISEASES
1.2	.4 PHARMACEUTICALS INTENDED TO TREAT LATE-LIFE
	ONSET DISEASES
1.3	REFERENCE COMPOUND LIST
1.3	.1 POSITIVE CONTROL REFERENCE COMPOUNDS
1.3	.2 NEGATIVE CONTROL REFERENCE COMPOUNDS

How to QUALIFY NAMs under ICHS5(R3): Context of Use

Under ICHS5(R3), NAMs approaches should:

- Provide a level of confidence for human safety assurance at least equivalent to that provided by the current testing paradigms.
- Be qualified within a certain context-of-use (CoU), defined by
 - The chemical applicability domain of the assay, and
 - Characterization of the **biological mechanisms** covered by the assay.
 - **Regulatory** considerations:
 - What (non)-clinical endpoint should the assay predict (**MEFL**)?
 - What non-clinical (in vivo) assay could the OoC precede or complement (to inform study design)
 - What non-clinical (in vivo) assay could the OoC replace? (rat, rabbit?)
- In accordance with **GLP**
- However, if used for mode of action (MoA) exploration or as supportive for *in vivo* study:
 → no such rigorous qualification is required.

C B

Qualification Criteria (ICHS5(R3), p36-37):

Description and justification of predictive model

- Which species does it predict Malformations and Embryo-fetal lethality (MEFL) for?
- Evaluation of **biological plausibility** of the model,
 - **Mechanism** of embryonic development in the model + adverse effects
 - Limitations of the models (what is not covered by the NAMs approach)
 - Developmental **window** of prediction (compared to *in vivo* / human)
- Determination of endpoints, description of negative or positive (adaptive response?)
- Statistical evidence to predict MEFL in a species (accuracy, prediction, sensitivity, specificity etc.)

C B

- Historical data of the test system
- **Reference** compounds
 - list of training sets / test sets, source of data
 - Description of chemical applicability domain

Scenario's for using (qualified) NAMs under ICHS5(R3)

- To support Phase I + II clinical trials (= saving animals by attrition)
- Qualified alternative assays predict MEFL* outcome in 'first' species)
- + pEFD *in vivo* study in 'second' species
- Rodent and non-rodent should be covered,
- Enable the limited inclusion of WOCBP (up to 150 WOCBP for up to 3 months)

(EU and Japan regions only, US region no testing required).

B

С

Marketing Authorization

Scenarios for using (qualified) NAMs under ICHS5(R3)

- To support Phase I + II clinical trials (=saving animals by attrition)
- Qualified alternative assays (predict MEFL* outcome in 'first' species) + pEFD in vivo study in 'second' species Rodent and non-rodent should be covered,
- Enable the limited inclusion of WOCBP (up to 150 WOCBP for up to 3 months) (EU and Japan regions only, US region no testing required).
- Known MoA (class effects, known effect on developmental pathways) (ICHS5(R3)scheme figure 1 Annex 2, p39)
- No clinically relevant **exposure** possible in animals
- Support for WoE assessment when equivocal results in animal studies
- Indication for severely debilitating or life-threatening diseases or late-life onset diseases

ICHS5(R3) figure 2 Annex 2, p39

*MEFL = malformations and embryo-fetal lethality

Reference compound list for NAMs under ICHS5(R3)

29 example Reference Compounds are listed in Annex 2 and published by Andrews *et al.*, 2019.

- Known human teratogens
- Suspected human teratogens (but only sufficient animal data)
- Difficult to find (data on) true negative teratogens

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Regulatory

Check for updates

foxicology an

Analysis of exposure margins in developmental toxicity studies for detection of human teratogens

Paul A. Andrews^{a,*}, Diann Blanset^b, Priscila Lemos Costa^c, Martin Green^d, Maia L. Green^{e,1}, Abigail Jacobs^d, Rajkumar Kadaba^f, Jose A. Lebron^e, Britta Mattson^e, Mary Ellen McNerney^g, Daniel Minck^d, Luana de Castro Oliveira^c, Peter T. Theunissen^h, Joseph J. DeGeorge^{e,2}

* Eisai Inc., Woodcliff Lake, NJ, USA

- ^b Boehringer Inge Theim Pharmaceuticals, Inc., Ridgefield, CT, USA
- ^e Agência Nacional de Vigilância Sanitária, Brasília, Brazíl
- ^d US Food and Drug Administration, Silver Spring, MD, USA
- "Merck & Co, Inc., West Point, PA, USA
- Health Canada, Ottawa, Ontario, Canada
- ⁸ Bristol-Myers Squibb, New Brunswick, NJ, USA ^h CBG-MEB, Uprecht, the Netherlands

Human Rat MEFL Rabbit MEFL Positive Controls Teratogen х Acitretin Х х Х х Aspirin х Bosentan х х х Busulfan х Carbamazepine Х х Cisplatin х Cyclophosphamide х х х Х х Cytarabine х Dabrafenib х Dasatinib х х Fluconazole Х 5-Fluorouracil х х х х х х Hydroxyurea Ibrutinib х х Ibuprofen х х х Imatinib Isotretinoin (13-cis-retinoic acid) х х Х Methotrexate х х Х Pazopanib х х Phenytoin (Diphenylhydantoin) х х Х Pomalidomide х х presumed Ribavirin х Х Tacrolimus х Х Thalidomide х х х х Х х Topiramate Tretinoin (all-trans-retinoic acid) х х х Trimethadione х х х х х Valproic acid Х Vismodegib presumed

Cyclophosphamide

CAS No.: 50-18-0

Rat NOAEL Dose C _{max} AUC	Rat LOAEL Dose C _{max} AUC	Rat Findings	Rabbit NOAEL Dose C _{max} AUC	Rabbit LOAEL Dose C _{max} AUC	Rabbit Findings	Human Dose C _{max} AUC	Margins NOAEL/Huma LOAEL/Human	Notes
NOAEL not identified (<2.5 mg/kg) [Chaube]	2.5 mg/kg IP GD9 [Chaube] Cytoxan Cmax = 4.1 µg/mL ^a AUC = 3.65 µg·h/mL ^a PM Cmax = 0.55 µg/mL ^b AUC(0-24h) = 2.13 µg·h/mL ^b	2.5 mq/kq GD9 [Chaube] embryolethal 5 mq/kq GD11 [von Kreybig, Mirkes] encephalocele exencephaly, microcephaly, limb defects (ie, syndactyly) and ectrodactyly), defective facia development (cleft palate)	NOAEL not identified (<30 mg/kg)	30 mg/kg IV single doses on GD6-14 [Mirkes, Fritz] <u>Cytoxan</u> Cmax = 151 µg/mL ^c AUC(0-8h) = 24.1 µg·h/mL ^d <u>PM</u> Cmax = 0.07 µg/mL ^e AUC(0-8h) = 0.297 µg·h/mL ^e	embryo-fetal resportions, omphalocele, cleft lip/ palate, forelimb skeletal defects	1600 mg/m ² (40 mg/kg) IV (highest dose, q 3 - 4 weeks) ^r Cytoxan C _{max} = 106 µg/mL9 AUC = 798 µg·h/mL9 PM C _{max} = 14.4 µg/mL ^h AUC = 352 µg·h/mL ^h	NOAEL: <u>rat:</u> NOAEL not identified, but LOAEL margins were <0.1 <u>rabbit</u> NOAEL not identified, but LOAEL margins were <1.5 LOAEL: <u>rat</u> C _{max} : 0.04 (4.1/106) AUC: 0.005 (3.65/798)	 MW CP = 261.086 MW PM = 221.018 Cytoxan is a prodrug, MEFL has been attributed to both phosphoramide mustard (PM) and acrolein metabolites

B

- e. Extrapolated from reported value after 20 mg/kg cytoxan intravenous single dose in NZW rabbits (Anthony): C_{max} = 0.22 μM (0.049 μg/mL) from visual inspection of graph, AUC_(0-8h) = 53.7 μmol·min/L (0.198 μg·h/mL).
- f. From SmPC.
- g. Extrapolated from reported value after 1000 mg/m² intravenous single dose cytoxan (Chan): C₀ = 254.4 μM (66.4 μg/mL), AUC_(0-inf) = 1910 μM·h (499 μg·h/mL).
- h. Extrapolated from reported value after 1000 mg/m² intravenous single dose cytoxan (Chan): C₀ = 40.5 μM (9.0 μg/mL), AUC_(0-inf) = 996.3 μM·h (220 μg·h/mL).

References

Anthony LB, Long QC, Struck RF, Hande KR. The effect of cimetidine on cyclophosphamide metabolism in rabbits. Cancer Chemother Pharmacol. 1990;27:125-30.

Chan KK, Hong PS, Tutsch K, Trump DL. Clinical pharmacokinetics of cyclophosphamide and metabolites with and without SR-2508. Cancer Res. 1994;54:6421-9.

Chaube S, Kury G, Murphy ML: Teratogenic effects of cyclophosphamide (NSC-26271) in the rat. Cancer Chemother Rep 1967;51:363-76.

Fritz H, Hess R. Effects of cyclophosphamide on embryonic development in the rabbit. Agents Actions. 1971;2:83-6.

Holm KA, Kindberg CG, Stobaugh JF, Slavik M, Riley CM. Stereoselective pharmacokinetics and metabolism of the enantiomers of cyclophosphamide. Preliminary results in humans and rabbits. Biochem Pharmacol. 1990;39:1375-84.

Hong PS, Srigritsanapol A, Chan KK. Pharmacokinetics of 4-hydroxycyclophosphamide and metabolites in the rat. Drug Metab Dispos. 1991;19:1-7.

Mirkes PE. Cyclophosphamide teratogenesis: a review. Teratog Carcinog Mutagen. 1985;5:75-88.

von Kreybig T. Die teratogene wirkung cyclophosphamid wahrend der embryonalen entwicklungsphase bei der ratte. Naunyn-Schniedeb Arch Exp Pathol Pharmakol. 1965;252:173-95.

Additional References Evaluated

Claussen U, Hettwer H, Voelcker G, Krengel HG, Servos G. The embryotoxicity of cyclophosphamide in rabbits during the histiotrophic phase of nutrition. Teratog Carcinog Mutagen. 1985;5:89-100.

Regulatory application of NAMs preceding and after ICHS5(R3)

<u>Up to 2020:</u>

Companies do generate data in house (60% of responders to IQ survey, not published) Sometimes shared through submissions

Since implementation of ICHS5(R3):

- No qualification exercises started at EMA
- One interested party at FDA, but not pursued further

Figures kindly provided by Ronald Wange, FDA

B

С

Companies are uncertain and reluctant to start formal qualification Regulators need to get more experienced with NAMs for regulatory purposes

IMPASSE...

Some hurdles from a pharmaceutical industry perspective*

Not clear what are the regulatory options and procedures.

- What exactly is **required** for qualification?
- How will qualfication be reflected accross different global regions?

Limitations of NAMs

Difficult to bridge the gap between hazard identification and risk assessment due to difficulty of **extrapolating exposure** (QIVIVE).

To support WoCBP in phase I and II trials, 2x pEFD or 1x pEFD + NAMs are required Generally, to support phase III trials, pivotal studies in 2 species are required

\rightarrow Performing 2 pEFD will provide a higher probability of succes pEFD+NAMs

Small- and medium-pharmaceutical companies do not have the opportunity to screen in-house.

→ General qualification for a wide context of use by 3rd parties is required for more general application 17

*HESI-DART, NAMs in DART testing for pharmaceuticals , publication in preparation

Lessons learned from ICH S5(R3)

$\stackrel{\mathrm{C}}{\longrightarrow} \stackrel{\mathrm{B}}{\longrightarrow} \stackrel{\mathrm{G}}{\longrightarrow} \stackrel{\mathrm{B}}{\longrightarrow}$

Regarding implementation of NAMs:

Mismatch between...

What is intended in ICHS5(R3)

- Part of WoE (Battery of assays + literature)
- Context of Use

What is percieved by developers and end-users

- Single assay replaces an animal study
- One assay fits all
- Additional communication needed on the intentions of ICHS5(R3).
- Consult stakeholders at initiation of drafting a guidance.

General reluctancy to share data:

- Promote sharing screening data in paralel with pivotal EFD studies upon marketing application:
 → Voluntary Sharing of Data (*Safe Harbour*)
- Increase the (very) limited experience with NAMs for regulators

Regulatory perspective on future implementation of NAMs

EMA aims to increase knowledge on NAMs and accellerate Qualification of NAMs:

- 3Rs Working Party (3RsWP) re-started in 2022
- Early **dialogue** with assay developers through **ITF**
- Promote possibilities to share data through "voluntairy data sharing"
- Guidance on qualification
 - Update general 3Rs and Qualification guidance
 - Provide specific guidance for OoC/MPS
- **Support** for qualification applications (ITF/ScAd)
 - European Specialised Expert Community (ESEC) for NAMs
- Creation of a **worldwide cluster** of regulators for <u>global</u> alignment

C B G

Innovative Task Force (ITF)

- Informal exchange with EMA experts and ESEC members
 - Present proof of concept and discuss possibilities for qualification
 - Proactive identification & assessment of impact on current scientific, legal and regulatory requirements
 - Early identification of specialised expertise needs
 - Advice on eligibility to EMA procedures
 - Review of regulatory and scientific implications
 - Increasing awareness & learning at the EMA
- Free of charge
- https://www.ema.europa.eu/en/human-regulatory/research-development/innovation-medicines

Qualification at EMA: Qualification Advice

Following steps after ITF:

- Formal talks with EMA before qualification (3RsWP / SAWP advice) Formal Qualification (SAWP qualification advice / opinion)
- Submission of proposal to the EMA in accordance with the procedure described
- in the Guideline on Qualification of Novel Methodologies for Drug

Development (EMA/CHMP/SAWP/72894/2008 Rev. 4)

- Submission via qualification@ema.europa.eu
- Assessment by a "qualification team" (consisting of experts from member states)
- Possible involvement of other agencies such as FDA and/or PMDA
- → Formal EMA statement that NAMs can be used under a predefined context of use (Qualification Opinion)

10 November 2014 EMA/CHMP/SAWP/72894/2008 Revision 1: January 2012¹ Revision 2: January 2014² Revision 3: November 2014³ Revision 4: October 2020⁴ Scientific Advice Working Party of CHMP

Qualification of novel methodologies for drug development: guidance to applicants

C B

Agreed by SAWP	27 February 2008			
Adoption by CHMP for	24 April 2008			
End of consultation (c	30 June 2008			
Final Agreed by CHMF	22 January 2009			
Keywords EMA. CHMP. Novel methodology. Qualification. Scientific Advice. Biomarker.				

ethodologies for drug to applicants

Guidance fo	r applicants	requesting	scientific advice
-------------	--------------	------------	-------------------

Future of NAMs in DART testing

- Find common ground with stakeholders to start data sharing \rightarrow
- Increased regulatory experience \rightarrow
- Increase in Qualification applications \rightarrow
- Increase in overall Context of Use \rightarrow
- More scenarios in which NAMs can be used under ICHS5(R3) Annex II

- Long term goals for NAMs in context of ICHS5(R3):
- Obtain more <u>human</u> relevant <u>mechanistic</u> data
- <u>Decrease</u> the use of <u>test animals</u> for DART testing
- Increased relevance of non-clinical data for Labeling for Pregnant women, Lactation and Fertility

MEDICINES EVALUATION BOARD

