

Contemporary Reproductive and Developmental Toxicity Testing: New Approaches and Methodologies

Aldert H. Piersma RIVM, Bilthoven, Netherlands

Dedicated to the Prevention of Birth Defects

environmental

pharmaceutical

behavioural

Thalidomide exposure-effect timing

Thalidomide epidemiology

(Un)known causes of birth defects

RDT safety evaluation of chemicals

- Since the 1960ies hazard and risk assessment has been largely based on animal studies.
- Guidelines for standardized animal study protocols have been harmonized globally through OECD.
- The prenatal developmental toxicity study and the generation study became central for RDT assessment.
- Guideline studies have been largely focused on adverse health outcomes.
- Extrapolation factors are used to translate overall No Observed Adverse Effect Level (NOAEL) into Point of Departure for human risk assessment (default 10x10 for intra- and interspecies differences).

Five decades of regulatory animal studies

- The system based on animal testing appears to perform generally well.
- Reproductive and developmental toxicity studies have low power of detection for low incidence adverse effects.
- Relevance of animal findings for humans is not always clear.
- Meanwhile information on underlying mechanisms of RDT has increased significantly.
- Ethical issues with animal studies for human safety and public awareness has increased.
- Non-animal alternative methods have increasingly been developed and have found applications over time.
- Regulatory acceptance of non-animal methods as alternatives for animal studies still lags behind.

Objectives of in vitro testing: The three R's

• Replace in vivo testing

• Reduce animal use, cost, time

• Refine effect assessment

In vitro = reductionistic approach

Two applications of in vitro tests

In vitro complexity: pro-con

Selected devtox alternatives

Rodent whole embryo culture

WEC (photo Aart Verhoef, RIVM)

Zebrafish embryo test ZFET (photo Sanne Hermsen, RIVM)

Embryonic stem cell test EST (photo Dorien van Dartel, RIVM)

Embryonic stem cell differentiation

Embryonic stem cell differentiation

(1)

2024 Reproductive and Developmental Toxicology Course

Slide 14

Embryonic stem cell test (cardiac)

Embryonic stem cell culture

Hanging drop culture

Embryoid Bodies (day 3)

Embryoid Body (day 5)

Embryoid Body (day 10)

Van Dartel et al., 2009

EST validation study

- 20 compounds were tested, discriminating strong/weak/none embryotoxicants
- Scoring beating muscle foci by eye proved laborious and subjective
- Predictivity versus animal study data was around 80% (sensitivity and specificity combined)
- ECVAM listed the validated assay on their website
- Subsequent testing with other compounds appeared less predictive
- Prompted need for better definition of biological domain
- Prompted further research into alternative end points that were less laborious and more objective

EST differentiation – related gene expression

E

2024 Reproductive and Developmental Toxicology Course

Slide 17

Threshold of adversity in vitro?

- Flusilazole dose-response
- EST classical dose-response on contracting muscle foci readout
- Differentiation is more sensitive than proliferation
- Interpreted as indicative of a specific developmental toxicant

Slide 18

Flusilazole-induced GO-term enrichment

Van Dartel et al., 2011

EST neural differentiation assay

Photo's Peter Theunissen, RIVM

MeHg effects on gene sets over time

- Embryonic time gene sets decrease
- Gene sets for early development decrease
- Neuroectodermal gene sets increase
- Gene expression for non-neuroectodermal germ layers decreases
- Agrees with in vivo studies showing enhanced neural differentiation at the expense of proliferation and migration causing brain malformations

Zebrafish embryotoxicity test

Hermsen et al., 2011

Flusilazole dose-response morphology versus gene expression

Flusilazole-induced gene set regulation

Hermsen et al., 2011

Reductionist models for human risk assessment

Issues with classical validation

- The animal study as the gold standard
- The 1:1 replacement paradigm
- The relevance of mathematical / statistical prediction models
- The exposure and kinetics of compounds

- Cf. the human is the target for risk assessment
- Cf. the reductionist nature of in vitro assays
- Cf. the biological domain of the in vitro assay
- Cf. external exposure in intact individuals versus direct exposure to cells in vitro

Two extreme options for innovation of chemical risk assessment for humans

"Evolution"

"Revolution"

- Improve current approaches
- Animal study as the gold standard
- Framed within current legislation

- Start from scratch
- Human biology as the gold standard
- Independent of current legislation

Adverse outcome pathways: Merits and issues

- AOP approach has stimulated the use mechanistic information in human risk assessment
- Physiology is not one-directional; Toxicological mechanisms are not linear; AOPs do not work in isolation
- Complex mechanistic network modelling is required for toxicity prediction

Homeostasis through feedback mechanisms:

the Hypothalamus-Pituitary-Gonadal axis

Adverse Outcome Pathway Networks

Toxicological Ontology

Animal-free risk assessment

Toxicological ontology modelling

Computational ontology models: a proof of principle

OPEN OACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

A Computational Model Predicting Disruption of Blood Vessel Development

Nicole Kleinstreuer¹, David Dix¹, Michael Rountree¹, Nancy Baker², Nisha Sipes¹, David Reif¹, Richard Spencer², Thomas Knudsen¹*

1 National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America, 2 Lockheed-Martin, Research Triangle Park, North Carolina, United States of America

Kleinstreuer et al., 2013

OPEN O ACCESS Freely available online

vascular plexus formation.

PLOS COMPUTATIONAL BIOLOGY

A Computational Model Predicting Disruption of Blood Vessel Development

Nicole Kleinstreuer¹, David Dix¹, Michael Rountree¹, Nancy Baker², Nisha Sipes¹, David Reif¹, Richard Spencer², Thomas Knudsen¹*

1 National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America, 2 Lockheed-Martin, Research Triangle Park, North Carolina, United States of America

Table 3. Cell types, behaviors, and associated angiogenic signals represented in the computational model of early embryonic

Agent-Based Model (CompuCell3D)

Endothelial Stalk

Inflammatory Cell

Endothelial Tip

Mural Cell

VEGF165 MMPs VEGF121 sFlit1 TIE2 CXCL10 CCL2

Cell Type	Behavior	Signal	
Endothelial Tip Cell (ECt)	migration up chemotactic gradients	VEGF165, VEGF121, CCL2	
	secretion of proteases that break down ECM and release growth factors	PAI1, Proteases, VEGF165	
	expression of chemokines	CCL2	
	motility along the ECM	uPAR, VCAM1	
	Apoptosis		
Endothelial Stalk Cell (EC,)	proliferation in response to growth factors	VEGF165, VEGF121	
	inhibition of proliferation	CXCL10	
	secretion of proteases that break down ECM and release growth factors	PAI1, Proteases, VEGF165	
	secretion of soluble decoy receptors that bind and sequester growth factor	sVEGFR1	
	adhesion to other cell types	Tie2, VCAM1	
	assumption of tip cell type based on free surface area and growth factor concentration	VEGF165, VEGF121	
	motility along the ECM	uPAR, VCAM1	
	quiescence based on shared surface area with other cells		
	Apoptosis		
Inflammatory Cell (IC)	migration up chemotactic gradients	CCL2	
	expression of chemokines/growth factors	VEGF121, CCL2, CXCL10	
	interaction with the ECM to release bound growth factor	VEGF165	
	adhesion to other cell types	VCAM1	
	Apoptosis		
Mural Cell (MC)	expression of chemokines/growth factors	VEGF165, VEGF121, CCL2	
	adhesion to other cell types	ANG1, VCAM1	
	motility along the ECM	PAII	
	promotion of endothelial quiescence based on shared surface area		

Apoptosis

Signaling molecules diffuse uniformly and isotropically. Lattice boundary conditions are periodic. doi:10.1371/journal.pcbi.1002996.t003

Simulation of 5HPP-33 Concentration Response

SOURCE: Kleinstreuer et al. (2013) PLoS Comp Biol 9(4): e1002996

An RA neural tube - axial patterning AOP Framework

Tonk, Pennings & Piersma 2015

Neural tube closure molecular network

Heusinkveld et al., 2020

Computed neural tube closure

BMP Hypoactivation

spina bifida occulta

closed neural tube

BMP Hyperactivation

open spina bifida

CompuCell3D animation Berkhout et al., in progress

Considering compound kinetics

2024 Reproductive and Developmental Toxicology Course

Slide 41

The balance of transition in toxicological testing

Animal-free risk assessment

Piersma et al., 2019

"Revolutionizing" chemical risk assessment

- Based on integrated knowledge of the biology of the system
- Fit for purpose Comprehensive as to toxicity pathways
- Employing all existing knowledge in chemistry and toxicology (incl man and animal and in vitro and in silico)
- Targeting the human
- Avoiding the detour of the animal (time, cost, ethics)

A way forward

- Serving both "Revolution" and "Evolution"
- Develop tools that fit both Revolution and Evolution
- Aim at transition to innovative approach on the horizon whilst implementing low hanging fruit now
- Intensify stakeholder interaction
 - (science, government, industry, NGO, politics)
- Intensify multidisciplinary collaboration
 - (biology, toxicology, data scientists, software developers, artificial intelligence experts)

Thank You

"The computer is claiming its intelligence is real, and ours is artificial."

